Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 1, 2026
-
Free, publicly-accessible full text available June 26, 2026
-
Free, publicly-accessible full text available March 25, 2026
-
Abstract This paper provides a (rigorous) theoretical framework for the numerical approximation of Riccati-based feedback control problems of hyperbolic-like dynamics over a finite-time horizon, with emphasis on genuine unbounded control action. Both continuous and approximation theories are illustrated by specific canonical hyperbolic-like equations with boundary control, where the abstract assumptions are actually sharp regularity properties of the hyperbolic dynamics under discussion. Assumptions are divided in two groups. A first group of dynamical assumptions (actually dynamic properties) imply some preliminary critical properties of the control problem, including the definition of the would-be Riccati operator, in terms of the original data. However, in order to guarantee that such an operator is moreover the unique solution (within a specific class) of the corresponding Differential/Integral Riccati Equation, additional smoothing assumptions on the operators defining the performance index are required. The ultimate goal is to show that the the discrete finite dimensional Riccati based feedback operator, when inserted into the original PDE dynamics, provides near optimal performance.more » « less
-
Abstract We consider thed-dimensional MagnetoHydroDynamics (MHD) system defined on a sufficiently smooth bounded domain,$$d = 2,3$$ with homogeneous boundary conditions, and subject to external sources assumed to cause instability. The initial conditions for both fluid and magnetic equations are taken of low regularity. We then seek to uniformly stabilize such MHD system in the vicinity of an unstable equilibrium pair, in the critical setting of correspondingly low regularity spaces, by means of explicitly constructed, static, feedback controls, which are localized on an arbitrarily small interior subdomain. In additional, they will be minimal in number. The resulting space of well-posedness and stabilization is a suitable product space$$\displaystyle \widetilde{\textbf{B}}^{2- ^{2}\!/_{p}}_{q,p}(\Omega )\times \widetilde{\textbf{B}}^{2- ^{2}\!/_{p}}_{q,p}(\Omega ), \, 1< p < \frac{2q}{2q-1}, \, q > d,$$ of tight Besov spaces for the fluid velocity component and the magnetic field component (each “close” to$$\textbf{L}^3(\Omega )$$ for$$d = 3$$ ). Showing maximal$$L^p$$ -regularity up to$$T = \infty $$ for the feedback stabilized linear system is critical for the analysis of well-posedness and stabilization of the feedback nonlinear problem.more » « less
-
Free, publicly-accessible full text available November 1, 2025
-
We provide maximal 𝐿𝑝-regularity up to the level 𝑇 < ∞ or 𝑇 = ∞ of an abstract evolution equation in Banach space, which captures boundary closed-loop parabolic systems, defined on a bounded multidimensional domain, with finitely many boundary control vectors and finitely many boundary sensors/actuators. Illustrations given include classical parabolic equations as well as Navier-Stokes equations in 𝐿𝑝(Ω) or 𝐿𝑞 𝜎(Ω), respectively.more » « less
-
Abstract An optimal, complete, continuous theory of the Luenberger dynamic compensator (or state estimator or state observer) is obtained for the recently studied class of heat-structure interaction partial differential equation (PDE) models, with structure subject to high Kelvin-Voigt damping, and feedback control exercised either at the interface between the two media or else at the external boundary of the physical domain in three different settings. It is a first, full investigation that opens the door to numerous and far reaching subsequent work. They will include physically relevantfluid-structure models, with wave- or plate-structures, possibly without Kelvin-Voigt damping, as explicitly noted in the text, all the way to achieving the ultimate discrete numerical theory, so critical in applications. While the general setting is functional analytic, delicate PDE-energy estimates dictate how to define the interface/boundary feedback control in each of the three cases.more » « less
-
Abstract The Moore-Gibson-Thompson [MGT] dynamics is considered. This third order in time evolution arises within the context of acoustic wave propagation with applications in high frequency ultrasound technology. The optimal boundary feedback control is constructed in order to have on-line regulation. The above requires wellposedness of the associated Algebraic Riccati Equation. The paper by Lasiecka and Triggiani (2022) recently contributed a comprehensive study of the Optimal Control Problem for the MGT-third order dynamics with boundary control, over an infinite time-horizon. A critical missing point in such a study is the issue of uniqueness (within a specific class) of the corresponding highly non-standard Algebraic Riccati Equation. The present note resolves this problem in the positive, thus completing the study of Lasiecka and Triggiani (2022) with the final goal of having on line feedback control, which is also optimal.more » « less
An official website of the United States government

Full Text Available